CC-3: Mathematical Analysis

Unit 1:

- A) Short type questions (Marks 5):
 - 1. Prove the fundamental theorem of real analysis.
 - 2. State and prove Archimedean Property.
 - 3. Show that between any two real numbers there exists a rational number.
 - 4. What is completeness property of \mathbb{R} ? Does the set of rational numbers possess the property?
 - 5. What is cluster point of a set? Find Cluster(A), where A = (0,1).
 - 6. If c_0 is an interior point of A then it must be a cluster point of the set.
 - 7. Define convergence and divergence of real sequence. Show that if a real sequence is convergent then its limit must be unique.
 - 8. Check using definition the convergence of the following sequences (each having 5 marks): i) $a_n=(-1)^n$, $n\geq 1$; ii) $a_n=\frac{(-1)^n}{n}$, $n\geq 1$; iii) $a_n=\frac{2n+3}{n+1000}$
 - 9. Define monotonic sequence. Show that a sequence of real numbers $a_n = \left(1 + \frac{1}{n}\right)^n$, $n \in \mathbb{N}$ is convergent.
 - 10. $\operatorname{Supposelim}_{n \to \infty} a_n = l \operatorname{thenlim}_{n \to \infty} 1/a_n = 1/l$, provided $a_n \neq 0 \ \forall \ n \geq 1 \ \& \ l \neq 0$.
 - 11. Show that a positive term series is convergent if and only if it is bounded.
 - 12. What are absolute convergence and conditional convergence of a real series $\sum_{n\geq 1} a_n$. Show that if $\sum_{n\geq 1} a_n$ is convergent, where $a_n>0$, then the series $\sum_{n\geq 1} \sqrt{a_n a_{n+1}}$ is also convergent.
 - 13. For a convergent sequence $\sum_{n\geq 1} a_n$, show that $\lim_{n\to\infty} a_n=0$.
 - 14. Show that $\sum_{n\geq 1} a_n$ is convergent absolutely if and only if $\sum_{n\geq 1} a_n^+$ and $\sum_{n\geq 1} a_n^-$ both are convergent where $a_n^+ = \max{(a_n,0)}$ and $a_n^- = -\min{(a_n,0)}$.
 - 15. State and prove Leibnitz Theorem.
- B) Broad type questions (Marks 10):
 - 1. State and prove Squeeze theorem. Check for convergence of a real sequence $a_n = x^n$; $x \in \mathbb{R}$.
 - 2. Define Cauchy sequence of real numbers with an example. Show that a sequence is a Cauchy sequence if and only if it is convergent.
 - 3. Describe Cauchy's first and second theorem on limit. Give suitable examples. Show that for a real sequence $\{a_n\}$ if $S_n = \sum_{k=1}^n a_k \to s$ $(\in \mathbb{R})$ then $\frac{1}{n} \sum_{k=1}^n k \ a_k \to 0$ as $n \to \infty$.
 - 4. Describe root test and ratio test for convergence of real series. Show with an example that root test is more powerful than ratio test.
 - 5. If a real series is convergent absolutely then show that it is convergent in ordinary sense. Show that $\sum_{n\geq 1} a_n$ is convergent conditionally then $\sum_{n\geq 1} a_n^+$ and $\sum_{n\geq 1} a_n^-$ both are divergent where $a_n^+ = \max{(a_n,0)}$ and $a_n^- = -\min{(a_n,0)}$.
 - 6. What is rearrangement of a real series? State Riemann's theorem regarding rearrangement of real series. Justify the above with the series $\sum_{n\geq 1} (-1)^{n-1}/n$.

Unit 2:

- C) Short type questions (Marks 5):
 - 1. Let f(x) = [x], the greatest integer contained in x. Using definition show that $\lim_{x \to a} f(x)$ exists at x = 2.8 but not at x = 2.
 - 2. Consider the following function

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$$

Show that limit of f does not exist at any $c \in \mathbb{Q}$ (state any result required by you).

- 3. Let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ be two functions and c be a cluster point of D such that $\lim_{x\to c} f(x) = l_1$ and $\lim_{x\to c} g(x) = l_2$. Show that using definition (each having 5 marks)
 - i) $\lim_{x\to c} \{f(x) \pm g(x)\} = l_1 \pm l_2$
 - ii) $\lim_{x \to c} f(x) g(x) = l_1 l_2$
 - iii) $\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{l_1}{l_2}$, provided $l_2 \neq 0$.
- 4. Let $f:D\to\mathbb{R}$ and $g:D\to\mathbb{R}$ be two functions and c be a cluster point of D such that $\lim_{x\to c} f(x)=0$ and $|g(x)|\leq M<\infty$ for all $x\in D-\{c\}$. Show that using definition $\lim_{x\to c} f(x)\ g(x)=0$.
- 5. What do you mean by a locally bounded function? Show that f(x) = 1/x is not bounded on (0,1) but it is locally bounded at every point on (0,1).
- 6. Show that if $\lim_{x\to c} f(x) = l \in \mathbb{R}$ then f is locally bounded at x=c (a cluster point of the domain of f).
- 7. Show that if $\lim_{x\to c} f(x) = l \neq 0$, then there is an interval around c such that $f(x) \neq 0$ on the interval.
- 8. Let $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ be two functions and c be a cluster point of D such that $f(x) \le g(x)$ for all $x \in D \{c\}$. Show that $\lim_{x \to c} f(x) \le \lim_{x \to c} g(x)$.
- 9. State and prove Squeeze theorem in connection with limit of a real function.
- 10. Let $f: D \to \mathbb{R}$, be a function with c being the cluster point of D and $\lim_{x \to c} f(x) = l \in \mathbb{R}$. Define $g_n(x) = a_n + b_n f(x)$ for $x \in D$ and $n \ge 1$, where $\{a_n\}$ and $\{b_n\}$ are real sequences such that $\lim a_n = a$ and $\lim b_n = b$. Show that using definition

$$\lim_{n\to\infty}\lim_{x\to c}g_n(x)=a+bl.$$

- 11. Show that a polynomial of degree $n \in \mathbb{N}$ is continuous everywhere (clearly state any results you need to use).
- 12. Show that if $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] then f is bounded on [a,b].
- 13. If $f: D \to \mathbb{R}$ is continuous on D then $g = \sqrt{f}$ is also continuous on D provided f(x) > 0 for all $x \in D$.
- 14. Check for uniform continuity of the followings (each having 5 marks)
 - i) $f(x) = \frac{1}{x}$ on $[a, \infty)$ with a > 0
 - ii) $f(x) = x^2 \text{ on } (-b, b) \text{ with } b > 0$
 - iii) $f(x) = \sqrt{x}$ on $[0, \infty)$
- 15. State Lagrange's Mean Value Theorem. Hence show that if the derivative of a function is positive on a subset of its domain then the function is monotonically increasing on the set.

- 16. State Lagrange's Mean Value Theorem (MVT). Hence show that if a function, $f: [a, b] \rightarrow$ \mathbb{R} , satisfies the condition of Lagrange's MVT and the derivative of f is bounded on [a, b] then f is uniformly continuous on [a, b].
- 17. Derive Taylor's polynomial of degree n generated from
 - $f(x) = e^x$ about $x_0 = 0$ i)
 - $f(x) = \ln(1+x) \text{ about } x_0 = 0$ ii)
 - $f(x) = \ln x$ about $x_0 = 1$ iii)
 - iv) $f(x) = \sin x$ about $x_0 = 0$
 - $f(x) = \sin x$ about $x_0 = 0$ v)
- 18. Describing L'Hospital's rule(s) find the followings
 - i)
 - $\lim_{x \to 0+} \frac{\sin x}{\sqrt{x}}$ $\lim_{x \to 0} \frac{1 \cos x}{x^2}$ ii)
 - iii)
 - $\lim_{x\to 0} \frac{e^{x-1}}{x}$ $\lim_{x\to 0} \frac{\ln(1+x)}{x}$ $\lim_{x\to \infty} \frac{\ln x}{x}$ $\lim_{x\to \infty} x^2 e^{-x}$ iv)
 - v)
 - vi)
 - $\lim_{x\to 0+} x^x$ vii)
 - $\lim_{x\to\infty} \left(1 + \frac{1}{x}\right)^x$ viii)
- D) Broad type questions (Marks 10):
 - 1. Show that $\lim_{x\to c} f(x) = l \in \mathbb{R}$, where c is a cluster point of D (the domain of f), if and only if for every sequence $\{x_n\}$ in $D-\{c\}$, $f(x_n) \to l$ as $n \to \infty$. Hence show that $\lim_{x\to 2} [x]$ does not exist, where [x] is the greatest integer contained in x.
 - 2. State and prove Intermediate Value Theorem. Hence show that a polynomial of degree n has a real root if n is odd.
 - 3. Describe different kind of discontinuities of a function with suitable examples.
 - 4. What is Lipschitz function? Show that a Lipschitz function is uniformly continuous. Provide an example, with appropriate justification, of a function which uniformly continuous but not a Lipschitz function.
 - 5. What do you mean by derivative of a function at a point? How you define derivative if the point is a boundary point of its domain. Provide geometric interpretation of the above two situations.
 - 6. Construct three functions (with appropriate justification) such that
 - i) The function is nowhere continuous
 - ii) The function is continuous at a single point but nowhere differentiable
 - The function is continuous and differentiable at a single point. iii)

Unit 3:

- E) Short type questions (Marks 5):
 - 1. Define first and second kind of improper integrals.
 - 2. Check for convergence of the following (each having 5 marks): i) $\int_1^\infty 1/x^p \ dx$, ii) $\int_0^\infty \exp(-ax) \ dx$, iii) $\int_0^1 1/x^p \ dx$, iv) $\int_0^\infty 1/(x^2+\sqrt{x}) \ dx$, v) $\int_0^\infty 1/(e^x+1) \ dx$
 - 3. State different properties of Gamma and Beta functions.
- F) Broad type questions (Marks 10):
 - 1. Study the convergence of Gamma function.
 - 2. Study the convergence of Beta function.
 - 3. Discuss different tests for convergence in connection with improper integral.

Unit 4:

- G) Short type questions (Marks 5):
 - 1. Discuss the theory of maximum-minimum of function with two variables.
 - 2. Discuss the concept of polar transformation and find Jacobian of transformation for three variables.
 - 3. What is saddle point of a function? Give an example to explain the concept.
 - 4. Evaluate: $\int \int_{\mathcal{D}} \exp(-(x^2+y^2)) \, dx dy$, where \mathcal{D} is the region between the two circles $x^2+y^2=1$ and $x^2+y^2=4$.
- H) Broad question type (Marks 10):
 - 1. Discuss the concept of Lagrange Multiplier and its use in finding the maximum-minimum of functions. Provide a suitable example.
 - 2. i) Evaluate $\int \int_R \left(\frac{x-y}{x+y+2}\right)^2 dx dy$ over the region R pictured. Where A (-1,0), B (0,-1), C (1,0) and D (0,1). ii) Find the maximum value of the function $f(x,y) = x^2y$ when it is given that $x^2 + y^2 = 3$.

CC-4: Probability and Probability Distributions II

- 1. What is moment generating function (m.g.f.)? Derive the *m.g.f.* of the rectangular distribution with *p.d.f.* $f(x) = \frac{1}{(b-a)}$; a < x < b.
- 2. Four coins, not all of which are unbiased, are thrown simultaneously and the numbers of heads are noted. If the probability of head for the four coins are 3/8, 5/8, 3/8 and 1/2 respectively, derive the probability generating function and hence find the probability of having two heads.
- 3. Let X be normal with mean zero and let Y be independent of X with $P(Y = 1) = P(Y = -1) = \frac{1}{2}$.
 - (i) Find the distribution function of XY.
 - (ii) Find the correlation coefficient between X and XY and comment on their dependence.
- 4. For the probability mass function

$$P[X = j] = \frac{a_j \theta^j}{f(\theta)}, \quad j = 0, 1, 2, \dots ; \ \theta > 0,$$

where $a_j \ge 0$ and $f(\theta) = \sum_{i=0}^{\infty} a_i \theta^i$, find the m.g.f. in terms of $f(\cdot)$.

- 5. The joint density of X and Y is given by $f(x,y) = \frac{\left(e^{-\frac{X}{y}}e^{-y}\right)}{y}$; x > 0, y > 0. Find E(X|Y=y).
- 6. For $N(\mu, \sigma^2)$ distribution establish the following relation for the central moments $\mu_{2r+2} = \sigma^2 \mu_{2r} + \sigma^3 \frac{d\mu_{2r}}{d\sigma}.$

Also, derive the *m.g.f.* of $N(\mu, \sigma^2)$ distribution. Use it to find the expected value of the geometric mean of two independent lognormal random variables.

- 7. When is a distribution said to be truncated? Let X follows the standard exponential distribution with mean θ and C be any positive constant. Find the mean and variance of X truncated for all values above C.
- 8. Define the negative binomial distribution. Find out its *m.g.f.* and hence find out its coefficient of variation.
- 9. Let $X \sim N(\mu, \sigma^2)$. Find the density of X truncated on the left at a and on the right at b. For any positive c, if $a = \mu c$ and $b = \mu + c$, then find the mean and variance of the truncated distribution.
- 10. Consider the random variable X with p.d.f. $f(x) = b \exp[-b(x-a)]$, $a < x < \infty$. Show that $E|X \mu_e| = (log_e 2)/b$, where μ_e is the median of the distribution.
- 11. Show that the moment generating function of a Cauchy distribution does not exist.

- 12. Show that for a Gamma(k) distribution, Mode = Mean $s.d./\sqrt{k}$. Also show that excess of kurtosis of the distribution is 6/k.
- 13. Let X and Y be two independent random variables follow common geometric distribution. Find Var(Y|X+Y=k).
- 14. Show that $\binom{k+x-1}{x}p^kq^x \to e^{-\mu}\frac{\mu^x}{x!}$ as $p \to 1$ and $k \to \infty$ in such a way that kq = k(1-p) remains constant.
- 15. Let X be binomial random variable with parameters n and p. Obtain $E[(1+t)^X]$ and hence find E(X). If Y be independently and identically distributed with X, show that the distribution of X-Y is symmetric about zero.
- 16. If X is a Poisson random variable with parameter λ , then find the value of $E(1+X)^{-1}$.
- 17. Define probability generating function (p.g.f.) of a discrete random variable. Let $S_1 = X_1 + X_2$ and $S_2 = X_1 X_2$ where X_i 's are i.i.d. random variables each assuming the values 1, 2, ..., a with the same probability 1/a. Find the probability generating function of S_1 and S_2 . Hence determine the probability that X_1 exceeds X_2 .
- 18. Show that in a series of 2s + 1 trials with success probability 0.5, the most probable no. of success is s and the corresponding probability is

$$T_S = P(X = s) = \frac{1 \cdot 3 \cdot 5 \cdots (2s - 1)}{2 \cdot 4 \cdot 6 \cdots 2s}.$$

Also show that $\frac{1}{2\sqrt{s}} < T_S < \frac{1}{\sqrt{2s+1}}$.

- 19. Show that the absolute mean deviation about mean of Bin(n,p) distribution is $2m \binom{n}{m} p^m q^{n-m+1} = (2mpq/\pi)^{1/2}$ where $np < m \le np + 1$.
- 20. Let X be a Poisson variate with mean θ . Show that $E(X^2) = \theta E(X+1)$. If $\theta = 1$, show that $E(|X \theta|) = \frac{2}{e}$.