CC9: Unit-2: Multivariate Calculus-II Double Integration:

Change the order of integration in the following double integrals:

1. $\int_{0}^{4} d x \int_{3 x^{2}}^{12 x} f(x, y) d y$
2. $\int_{0}^{1} d y \int_{y}^{\sqrt{y}} f(x, y) d x$
3. $\int_{0}^{1} d x \int_{2 x}^{3 x} f(x, y) d y$
4. $\int_{0}^{a} d x \int_{\frac{a^{2}-x^{2}}{2 a}}^{\sqrt{a^{2}-x^{2}}} f(x, y) d y$
5. $\int_{0}^{1} d y \int_{-\sqrt{1-y^{2}}}^{1-y} f(x, y) d x$
6. $\int_{0}^{2 a} d x \int_{\sqrt{2 a x-x^{2}}}^{\sqrt{4 a x-x^{2}}} f(x, y) d y$
7. $\int_{0}^{2} d x \int_{2 x}^{6-x} f(x, y) d y$
8. $\int_{\frac{a}{2}}^{a} d x \int_{0}^{\sqrt{2 a x-x^{2}}} f(x, y) d y$
9. $\int_{0}^{1} d x \int_{\sqrt{1-x^{2}}}^{\sqrt{4-x^{2}}} f(x, y) d y$
10. $\int_{0}^{2 a} d x \int_{\frac{x^{2}}{4 a}}^{3 a-x} f(x, y) d y$
11. $\int_{\frac{1}{3}}^{\frac{2}{3}} d x \int_{x^{2}}^{\sqrt{x}} f(x, y) d y$
12. $\int_{-1}^{1} d x \int_{-x}^{1+x} f(x, y) d y$
13. $\int_{0}^{1} d y \int_{1-y}^{1+y} f(x, y) d x$
14. $\int_{0}^{1} d y \int_{\frac{y^{2}}{2}}^{\sqrt{3-y^{2}}} f(x, y) d x$
15. $\int_{2}^{4} d x \int_{\frac{4}{x}}^{\frac{20-4 x}{8-x}}(4-y) d x$
16. $\int_{0}^{1} d y \int_{y^{2}}^{3-2 y}(12-3 x-4) d x$
17. $\int_{0}^{1} d x \int_{0}^{x} f(x, y) d y+\int_{1}^{2} d x \int_{0}^{2-x} f(x, y) d y$
18. $\int_{0}^{1} d x \int_{0}^{x^{2}} f(x, y) d y+\int_{1}^{3} d x \int_{0}^{\frac{2-x}{2}} f(x, y) d y$
19. By changing the order of integration prove that $\int_{0}^{a} d x \int_{0}^{x} \frac{f^{\prime}(y) d y}{\sqrt{(a-x)(x-y)}}=\pi\{f(\pi)-f(0)\}$.
20. By changing the order of integration prove that $\int_{0}^{1} d y \int_{0}^{\sqrt{1-x^{2}}} \frac{d y}{\left(1+e^{y}\right) \sqrt{1-x^{2}-y^{2}}}=\frac{\pi}{2} \log \left(\frac{2 e}{1+e}\right)$.
21. By changing the order of integration prove that $\int_{0}^{1} d y \int_{x}^{\frac{1}{x}} \frac{y d y}{(1+x y)^{2}\left(1+y^{2}\right)}=\frac{\pi-1}{4}$.
22. By changing the order of integration prove that $\int_{0}^{1} d y \int_{x}^{\frac{1}{x}} \frac{y^{2} d y}{(x+y)^{2} \sqrt{1+y^{2}}}=\sqrt{2}-\frac{1}{2}$.
23. Let f be a bounded function of x, y over rectangular region $R[a, b ; c, d]$. Considering a partition P of $R[a, b ; c, d]$, define lower sum $L(P ; f)$ and upper sum $U(P ; f)$. when f is integrable over R ?
24. Let a function f be defined on $R[1,2 ; 3,5]$ by $f(x, y)=x+2 y$, for $(x, y) \in R[1,2 ; 3,5]$. Find the lower integral sum and upper integral sum. Does $\iint_{R} f(x, y) d x d y$ exists?
25. Let a function f be defined on $R[0,1 ; 0,1]$ by $f(x, y)= \begin{cases}\frac{1}{2} & \text { when } y \text { is rational } \\ x & \text { when } y \text { is irrational }\end{cases}$
(i) Does $\iint_{R} f(x, y) d x d y$ exists?
(ii) Examine whether the iterated integrals $\int_{0}^{1} d y \int_{0}^{1} f(x, y) d x$ and $\int_{0}^{1} d x \int_{0}^{1} f(x, y) d y$ exist.
26. State the necessary and sufficient condition for the integrability of a f be a bounded function of x, y over rectangular region $R[a, b ; c, d]$.
27. Prove that if the double integral exists, the two repeated integrals can not exist without being equal.
28. Prove that $\int_{0}^{1} d x \int_{0}^{1} \frac{x-y}{(x+y)^{3}} d y \neq \int_{0}^{1} d y \int_{0}^{1} \frac{x-y}{(x+y)^{3}} d x$.

Evaluate the following integrals:

29. $\int_{0}^{\frac{\pi}{2}} \int_{0}^{\pi} \cos (x+y) d x d y$
30. $\int_{0}^{1} \int_{0}^{1-y^{2}}\left\{(x-1)^{2}+y^{2}\right\} d x d y$
31. $\int_{0}^{1} d x \int_{0}^{x} \sqrt{4 x^{2}-y^{2}} d y$
32. $\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \sin (x+y) d x d y$
33. $\int_{0}^{a} d x \int_{0}^{b} x y\left(x^{2}+y^{2}\right) d y$
34. $\int_{0}^{2} d x \int_{2 x}^{6-x} x^{2} y d y$
35. $\int_{-1}^{1} \int_{-1}^{1} \frac{d x d y}{\sqrt{x^{2}+y^{2}}}$
36. $\int_{-1}^{1} \int_{-1}^{1}|x+y| d x d y$
37. $\int_{0}^{1} d x \int_{0}^{1} x y(x-y) d x d y$
38. $\int_{0}^{2} d x \int_{y}^{\sqrt{y}}(1+x+y) d y$
39. $\int_{0}^{1} d y \int_{y^{2}}^{3-2 y}(12-3 x-4) d x$
40. $\int_{0}^{a} d x \int_{x^{2}}^{x} x y(x+y) d y$
41. Evaluate $\iint_{R}[x+y] d x d y$, where R is the rectangle bounded by $x=0, x=1 ; y=0, y=2$.
42. Prove that $\iint_{R} \sqrt{\left|y-x^{2}\right|} d x d y=\frac{1}{6}(3 \pi+8)$, where R is the rectangle bounded by $x=-1, x=1$; $y=0, y=2$.
43. Evaluate $\iint_{R}(y-x) d x d y$, where R is the rectangle in $x y$ - plane bounded by $y=x-3, y=x+1$; $3 y+x=5,3 y+x=7$.
44. Prove that $\iint_{R} x^{3} y^{3} d x d y=\frac{1}{48}\left(b^{4}-a^{4}\right)\left(q^{4}-p^{4}\right)$, where R is the region bounded by $y^{2}=a x, y^{2}=b x$; $x^{2}=p y, x^{2}=q y$, where $0<a<b$ and $0<p<q$.
45. Use the transformation $u=\frac{x^{2}+y^{2}}{x}, v=\frac{x^{2}+y^{2}}{y}$ to evaluate the integral $\iint_{R} x y d x d y$, where R is the region common to the circles $x^{2}+y^{2}=x, x^{2}+y^{2}=y$.
46. Prove that $\iint_{R} \sqrt{x y(1-x-y)} d x d y=\frac{2 \pi}{105}$, where R is the triangle bounded by the lines $x=0, y=0$ and $x+y=1$.
47. Evaluate $\iint_{R} \sqrt{2 a^{2}-2 a(x+y)-\left(x^{2}+y^{2}\right)} d x d y$, the region R of integration is the circle with center at (a, a) and radius $2 a$.
48. Evaluate $\iint_{R} \sqrt{\frac{a^{2} b^{2}-b^{2} x^{2}-a^{2} y^{2}}{a^{2} b^{2}+b^{2} x^{2}+a^{2} y^{2}}} d x d y, R$ is the positive quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
49. Show that the integral $\iint_{R} e^{\frac{y-x}{y+x}} d x d y$, where R is the triangular region with vertices $(0,0),(0,1)$ and $(1,0)$ is $\frac{1}{4}\left(e-\frac{1}{e}\right)$.
50. Evaluate $\iint \frac{x^{\frac{1}{2}} y^{\frac{1}{3}}}{(1-x-y)^{\frac{2}{3}}} d x d y$ over the region bounded by the lines $x=0, y=0, x+y=1$.
51. Show that $\iint_{R} \frac{d x d y}{\left(1+x^{2}+y^{2}\right)^{2}}$, where R is the triangular region with vertices $(0,0),(2,0)$ and $(1, \sqrt{3})$ is $\frac{\sqrt{3}}{2} \tan ^{-1} \frac{1}{2}$.
52. Prove that $\iint_{R} \sqrt{x^{2}+y^{2}} d x d y$, where R is the region in $x y$-plane bounded by the concentric circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$ is $\frac{14}{3} \pi$.
53. Using the transformation $x=u(1+v), y=v(1+u)$, show that $\int_{0}^{2} \int_{0}^{x} \frac{d x d y}{\sqrt{(x+y+1)^{2}-4 x y}} d x d y=\log \frac{4}{\sqrt{e}}$.
54. Show that $\int_{0}^{1} d x \int_{0}^{x} \sqrt{x^{2}+y^{2}} d y=\frac{1}{6}\{\sqrt{6}+\log (1+\sqrt{2})\}$ by transforming it into polar coordinates.
55. Show that $\int_{0}^{\pi} \int_{0}^{\pi}|\cos (x+y)| d x d y=2 \pi$ by using the substitution $x=u-v, y=v$.
56. Evaluate $\iint_{R} \sin \left(\frac{x-y}{x+y}\right) d x d y$, where R is the region in $x y$-plane bounded by $x=0, y=0$ and $x+y=1$.
57. Prove that $\iint_{R} \sin x \sin y \sin (x+y) d x d y=\frac{\pi}{16}$, where R is the region in $x y$-plane bounded by $x=0, y=0$ and $x+y=\frac{\pi}{2}$.
58. Evaluate $\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \sqrt{\frac{\sin \phi}{\sin \theta}} d \phi d \theta$, by using the substitution $x=\sin \phi \cos \theta, y=\sin \phi \sin \theta$.
59. Evaluate the integral $\int_{0}^{2 a} d x \int_{\sqrt{2 a x-x^{2}}}^{\sqrt{4 a x-x^{2}}}\left(1+\frac{y^{2}}{x^{2}}\right) d y$ by changing the coordinates to r, θ, where $x=r \cos ^{2} \theta, y=r \sin \theta \cos \theta$.
60. Show that $\iint_{R_{2}} \frac{d x d y}{x y}=\log \frac{a^{\prime}}{a} \log \frac{b^{\prime}}{b}$, where R is the region bounded by four circles $x^{2}+y^{2}=a x, x^{2}+y^{2}=a^{\prime} x, x^{2}+y^{2}=b x$ and $x^{2}+y^{2}=b^{\prime} x$.
61. Show that $\int_{0}^{\frac{\pi}{2}} d \phi \int_{0}^{\frac{\pi}{2}} f(1-\sin \theta \cos \phi) \sin \theta d \theta=\frac{\pi}{2} \int_{0}^{1} f(x) d x$.
62. If $m \geq 0$, prove that $\iint_{R}\left(1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right)^{m} f(p x+q y) d x d y=\beta\left(\frac{1}{2}, m+1\right) a b \int_{-1}^{1}\left(1-x^{2}\right)^{m+\frac{1}{2}} f(k x) d x$, where R is the region in $x y$-plane bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and $k=\sqrt{p^{2} a^{2}+q^{2} b^{2}}$.

Surface area by using multiple Integration:

1. Show that the surface area of the part of the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ which is cut out by the cylinder $x^{2}+z^{2}=a x$ is $2(\pi-2) a^{2}$.
2. Show that the surface area of the part of the surface of the sphere $x^{2}+y^{2}+z^{2}=4 a^{2}$ enclosed by the cylinder $\left(x^{2}+y^{2}\right)^{2}=2 a^{2}\left(2 x^{2}+y^{2}\right)$ is $16(\pi-\sqrt{2}) a^{2}$.
3. Find the area of the surface of the sphere $x^{2}+y^{2}+(z-2)^{2}=4$ which lies outside the paraboloid $x^{2}+y^{2}=3 z$.
4. Show that the surface area of the part of the surface of the cone $z^{2}=x^{2}+y^{2}$ which is cut out by the cylinder $z^{2}=2 p y$ is $2 \sqrt{2} \pi p^{2}$.
5. Show that the surface area of the part of the surface of the cylinder $x^{2}+y^{2}=a^{2}$ which is cut out by the cylinder $x^{2}+z^{2}=a^{2}$ is $8 a^{2}$.
6. Show that the surface area of the part of the surface of the cone $z^{2}+y^{2}=x^{2}$ inside the cylinder the cylinder $x^{2}+y^{2}=a^{2}$ is $2 \pi a^{2}$.
7. Show that the surface area of the part of the surface of the cone $z^{2}+y^{2}=x^{2}$ cut off by the cylinder the cylinder $x^{2}-y^{2}=a^{2}$ and the planes $y=b, y=-b$ is $8 \sqrt{2} a b$.
8. Show that the surface area of the part of the surface $z=x y$ cut off by the cylinder the cylinder $x^{2}+y^{2}=a^{2}$ is $\frac{2 \pi}{3}\left\{\left(1+a^{2}\right)^{\frac{3}{2}}-1\right\}$.
9. Show that the surface area of the part of the cone $z^{2}=x^{2}+y^{2}$ inside the cylinder the cylinder $x^{2}+y^{2}=2 x$ is $2 \sqrt{2} \pi$.
10. Show that the surface area of the part of the surface of the paraboloid $\frac{x^{2}}{a}+\frac{y^{2}}{b}=2 z$ inside the cylinder $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=k$ is $\frac{2}{3} \pi\left\{(1+k)^{\frac{3}{2}}-1\right\} a b$.
11. Evaluate $\iint_{S}\left(z+2 x+\frac{4}{5} y\right) d S$, where S is the portion of the plane $\frac{x}{2}+\frac{y}{3}+\frac{z}{4}=1$, lying in the first octant.
12. Evaluate $\iint_{S} x y z d S$, where S is the portion of the plane $x+y+z=1$, lying in the first octant.
13. Evaluate $\iint_{S} x d S$, where S is the portion of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$, lying in the first octant.
14. Evaluate $\iint_{S} \sqrt{a^{2}-x^{2}-y^{2}} d S$, where S is the hemisphere $z=\sqrt{a^{2}-x^{2}-y^{2}}$.
15. Evaluate $\iint_{S} x^{2} y^{2} d S$, where S is the hemisphere $z=\sqrt{a^{2}-x^{2}-y^{2}}$.
16. Evaluate $\iint_{S} x^{2} y^{2} z d S$, where S is the positive side of the lower half of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
17. Evaluate $\iint_{S} z^{2} d S$, where S is the outer side of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.

Triple Integration:

Evaluate the following triple integral:

1. $\int_{0}^{3 a} \int_{0}^{2 a} \int_{0}^{a}(x+y+z) d x d y d z$
2. $\int_{0}^{1} \int_{y^{2}}^{1} \int_{0}^{1-x} x d z d x d y$
3. $\int_{0}^{a} \int_{y^{2}}^{x} \int_{0}^{x+y} e^{x+y+z} d z d y d x$
4. $\int_{0}^{2} \int_{0}^{z} \int_{0}^{\sqrt{3} x} \frac{x}{x^{2}+y^{2}} d z d y d x$
5. $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \int_{a}^{b}\left(y^{2}+z^{2}\right) d z d y d x$
6. $\int_{0}^{1} d x \int_{0}^{1-x} d y \int_{0}^{1-x-y}(1+x+y+z)^{4} d z$
7. Show that $\iiint_{E}(1+x+y+z)^{2} d x d y d z=\frac{31}{60}$, where E is the tetrahedron bounded by the planes $x=$ $0, y=0, z=0$ and $x+y+z=1$.
8. Show that $\iiint_{E} \frac{d x d y d z}{(1+x+y+z)^{3}}=\frac{1}{16} \log \left(\frac{256}{e^{5}}\right)$, where E is the tetrahedron bounded by the planes $x=0, y=0, z=0$ and $x+y+z=1$.
9. Show that $\iiint_{E} x^{2} y^{2} z^{2}(x+y+z) d x d y d z=\frac{1}{50400}$, where E is the tetrahedron bounded by the planes $x=0, y=0, z=0$ and $x+y+z=1$.
10. Evaluate $\iiint_{E} x^{\alpha} y^{\beta} z^{\gamma}(1-x-y-z)^{\lambda} d x d y d z ; \alpha, \beta, \gamma, \lambda>-1$, where E is the tetrahedron bounded by the planes $x=0, y=0, z=0$ and $x+y+z=1$.
11. Show that $\iiint_{E} \frac{d x d y d z}{\sqrt{1-x^{2}-y^{2}-z^{2}}}=\frac{\pi^{2}}{8}$, where $E=\left\{(x, y, z): x^{2}+y^{2}+z^{2}<1\right\}$.
12. Show that $\iiint_{E}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z=\frac{4 \pi}{5}$, where E is the volume of the sphere $x^{2}+y^{2}+z^{2} \leq 1$.
13. Evaluate $\iiint_{E} \sqrt{\frac{1-x^{2}-y^{2}-z^{2}}{1+x^{2}+y^{2}+z^{2}}} d x d y d z$, where E is the positive octant of the sphere $x^{2}+y^{2}+z^{2} \leq 1$.
14. Show that the mass of the solid in the form of the positive octant of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$, the density at any point (x, y, z) being $x y z$.
15. Evaluate $\iiint_{E} e^{\sqrt{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}}} d x d y d z$, where E is the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1, \quad a, b, c>0$.
16. Evaluate $\iiint_{E} \sqrt{a^{2} b^{2} c^{2}-b^{2} c^{2} x^{2}-c^{2} a^{2} y^{2}-a^{2} b^{2} z^{2}} d x d y d z$, where $E=\left\{(x, y, z): \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1\right\}$
17. Show that $\iiint_{E} \frac{d x d y d z}{x^{2}+y^{2}+(z-2)^{2}}=\pi\left(2-\frac{3}{2} \log 3\right)$, where $E=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1\right\}$.
18. Show that $\iiint_{E} \frac{d x d y d z}{x^{2}+y^{2}+\left(z-\frac{1}{2}\right)^{2}}=\pi\left(2+\frac{3}{2} \log 3\right)$, where $E=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1\right\}$.
19. Show that $\iiint_{E}(a x+b y+c z) d x d y d z=\frac{4}{15} \pi\left(a^{2}+b^{2}+c^{2}\right)$, where $E=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1\right\}$.
20. Show that $\iiint_{E}\left(l x^{2}+m y^{2}+n z^{2}\right)^{2} d x d y d z=\frac{4}{15} \pi(l+m+n) a^{5}$, where $E=\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq a^{2}\right\}$.

Volume of a solid by using multiple Integration:

1. Prove that the volume common to the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and the cylinder $x^{2}+y^{2}=a y$ is $\frac{2}{9}(3 \pi-4) a^{3}$.
2. Prove that the volume common to the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and the cylinder $x^{2}+y^{2}=a x$ is $\frac{2}{9}(3 \pi-4) a^{3}$.
3. Prove that the volume common to the surface $y^{2}+z^{2}=4 a x$ and the cylinder $x^{2}+y^{2}=2 a x$ is $\frac{2}{3}(3 \pi+8) a^{3}$.
4. Prove that the volume common to the cylinders $x^{2}+y^{2}=a^{2}$ and the cylinder $x^{2}+z^{2}=a^{2}$ is $\frac{16}{3} a^{3}$.
5. Using surface integral show that the volume of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ is $\frac{4}{3} \pi a^{3}$.
6. Using surface integral show that the volume of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ is $\frac{4}{3} \pi a b c$.
7. Show that the volume of the solid bounded by the $x^{2}+y^{2}+z^{2}=4$ and the surface of the paraboloid $x^{2}+y^{2}=3 z$ is $\frac{19}{6} \pi$.
8. Prove that the volume common to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ and the cylinder $x^{2}+y^{2}=a y$ is $\frac{2}{9}(3 \pi-4) a^{2} b$.
9. Prove that the volume of the solid bounded by the parabolic cylinder $z=4-y^{2}$ and bounded below by the elliptic paraboloid $x^{2}+3 y^{2}=z$ is 4π.
10. Compute the volume of the solid bounded by $x y$-plane, paraboloid $z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ and cylinder $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{2 x}{a}$.
11. Prove that the volume included between the cylinder $x^{2}+y^{2}=a^{2}$ and the elliptic paraboloid $\frac{x^{2}}{p}+\frac{y^{2}}{q}=2 z$ and $x y$-plane is $\frac{p+q}{8 p q} \pi a^{4}$.
12. Find the volume of the region bounded by the plane $z=x+y$ and the paraboloid $x^{2}+y^{2}=c z$.
13. Show that the volume of the region bounded by the surface $\sqrt{\frac{x}{a}}+\sqrt{\frac{y}{b}}+\sqrt{\frac{z}{c}}=1$ and three coordinate planes is $\frac{a b c}{90}$.
14. Find the volume of the solid bounded above by the surface $2 x^{2}+4 y^{2}+z=4$ and bounded below by the surface $2 x^{2}+4 y^{2}-4 z=4$.
15. Find the volume of the solid bounded by the surfaces $x^{2}+y^{2}=2 a z, x^{2}+y^{2}-z^{2}=a^{2}$ and $z=0$.
16. Compute the volume of the solid bounded by the surface $\left(x^{2}+y^{2}+z^{2}\right)^{2}=a^{3} x$.
17. Determine the volume of the solid bounded by the surfaces $z=x+y, x y=1, x y=2, y=x, y=2 x, z=0$, where $x>0, y>0$.
18. Compute the volume of the solid bounded by the paraboloid $x^{2}+y^{2}=a(a-2 z), z \geq 0$ and sphere $x^{2}+y^{2}+z^{2}=a^{2}$.

Differentiation under the sign of Integration:

1. Show that $\int_{0}^{\pi} \log (1+a \cos x) d x=\pi \log \frac{1}{2}\left(1+\sqrt{1-a^{2}}\right),|a|<1$.
2. Show that $\int_{0}^{\pi} \frac{\log (1+a \cos x)}{\cos x} d x=\pi \sin ^{-1} a,|a|<1$.
3. Show that $\int_{0}^{\frac{\pi}{2}} \frac{\log \left(1+a \sin ^{2} x\right)}{\sin ^{2} x} d x=\pi(\sqrt{1+a}-1), a>-1$.
4. Show that $\int_{0}^{\pi} \frac{\log (1+\sin \alpha \cos x)}{\cos x} d x=\pi \alpha$.
5. Show that $\int_{0}^{\frac{\pi}{2}} \frac{\log (1+\cos \alpha \cos x)}{\cos x} d x=\frac{1}{2}\left(\frac{\pi^{2}}{4}-\alpha^{2}\right)$.
6. Show that $\int_{0}^{\frac{\pi}{2}} \log \left(1-x^{2} \sin ^{2} \theta\right) d \theta=\pi \log \frac{1}{2}\left(1+\sqrt{1-x^{2}}\right)=\int_{0}^{\frac{\pi}{2}} \log \left(1-x^{2} \cos ^{2} \theta\right) d \theta$, for $|x|<1$.
7. Show that $\int_{0}^{\frac{\pi}{2}} \log \left(1-e^{2} \sin ^{2} \theta\right) d \theta=\pi \log \frac{1}{2}\left(1+\sqrt{1-e^{2}}\right), \quad$ for $0<e^{2}<1$.

Hence find $\int_{0}^{\frac{\pi}{2}} \log (\sin \theta) d \theta$.
8. Show that $\int_{0}^{\frac{\pi}{2}} \log \left(a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta\right) d \theta=\pi \log \frac{1}{2}(a+b)$, for $a>0, \quad b>0$.
9. Show that $\int_{0}^{\frac{\pi}{2}} \log \left(\frac{a+b \sin \theta}{a-b \sin \theta}\right) \frac{d \theta}{\sin \theta}=\pi \sin ^{-1}\left(\frac{b}{a}\right)$, for $b<a$.
10. Show that $\int_{0}^{\frac{\pi}{2}} \frac{|a b| d x}{\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right)}=\frac{\pi}{2}, \quad a, b \in \mathbb{R}-\{0\}$,

Hence show that $\int_{0}^{\frac{\pi}{2}} \frac{|a b| d x}{\left(a^{2} \cos ^{2} x+b^{2} \sin ^{2} x\right)^{2}}=\frac{\pi\left(a^{2}+b^{2}\right)}{4|a b|^{3}}$.
11. Show that $\int_{0}^{\pi} \log \left(1-2 a \cos x+a^{2}\right) d x=\pi \log \left(a^{2}\right)$, where $|a|>1$.
12. Show that $\int_{0}^{\theta} \log (1+\tan \theta \tan x) d x=\theta \log (\sec \theta)$, where $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$.
13. Show that $\int_{\frac{\pi}{2}-\alpha}^{\frac{\pi}{2}} \sin \theta \cos ^{-1}(\cos \alpha \operatorname{cosec} \theta) d \theta=\frac{\pi}{2}(1-\cos \alpha), \quad 0<\alpha<\frac{\pi}{2}$.
14. Show that $\int_{0}^{a} \frac{\log (1+a x)}{1+x^{2}} d x=\frac{1}{2} \log \left(1+a^{2}\right) \tan ^{-1} a, \quad a>0$.
15. Show that $\int_{0}^{1} \frac{\tan ^{-1}(a x)}{x \sqrt{1-x^{2}}} d x=\frac{\pi}{2} \log \left(a+\sqrt{1+a^{2}}\right)$.
16. Show that $\int_{0}^{1} \log \left(\frac{1+a x}{1-a x}\right) \frac{d x}{x \sqrt{1-x^{2}}}=\pi \sin ^{-1} a, a^{2} \leq 1$.
17. Assuming that $\int_{0}^{1} x^{a} d x=\frac{1}{1+a},(a>-1)$; deduce that $\int_{0}^{1} \frac{x^{a-1}}{\log x} d x=\log 1+a$.
18. Assuming that $\int_{0}^{1} x^{a-1} d x=\frac{1}{a},(a>0)$; deduce that $\int_{0}^{1} \frac{x^{b-1}-x^{a-1}}{\log x} d x=\log \left(\frac{b}{a}\right), a>0, b>0$.
19. Show that $\int_{0}^{\infty} e^{-x^{2}-\frac{a^{2}}{x^{2}}} d x=\frac{\sqrt{x}}{2} e^{-2|a|}$ and $\int_{0}^{\infty} e^{-x^{2}-\frac{a^{2}}{x^{2}}} d x=\frac{\sqrt{x}}{2} e^{-2|a|}$.
20. Evaluate $\int_{0}^{\infty} e^{-x y} \cos m x d x$. Deduce that $\int_{0}^{\infty} e^{-x^{2}} \cos m x d x=\frac{\sqrt{\pi}}{2} e^{-\frac{\alpha^{2}}{4}}$.
21. Let $\int_{0}^{\infty} e^{-x y} d x=\frac{1}{y}, y>0$. Deduce that $\int_{0}^{\infty} \frac{e^{-a x}-e^{-a x}}{x} d x=\log \left(\frac{b}{a}\right), a>0, b>0$.
22. Under certain condition show that $\int_{0}^{\infty} \frac{f(a x)-f(b x)}{x} d x=f(0) \log \left(\frac{b}{a}\right), a>0, b>0$.
23. Show that $\int_{0}^{\infty} \frac{\cos x y}{1+x^{2}} d x=\frac{1}{2} \pi e^{-y}$ and $\int_{0}^{\infty} \frac{\sin x y}{x\left(1+x^{2}\right)} d x=\frac{1}{2} \pi\left(1-e^{-y}\right), y>0$.
24. Starting from $\int_{0}^{\infty} e^{-\alpha x} \cos \beta x d x=\frac{\alpha}{\alpha^{2}+\beta^{2}}, \quad \alpha \geq 0$ show that $\int_{0}^{\infty} e^{-\alpha x} \sin \left(\frac{\beta x}{x}\right) d x=\tan ^{-1}\left(\frac{\beta}{\alpha}\right)$.
25. Evaluate $\int_{0}^{\infty} e^{-t x^{2}} d x$, show that $\int_{0}^{\infty} \frac{e^{-a x^{2}}-e^{-b x^{2}}}{x^{2}} d x=\sqrt{\pi}(\sqrt{b}-\sqrt{a})$, where $a>0, b>0$.
26. Evaluate $\int_{0}^{\infty} e^{-a x} \sin t x d x$, Use the result to evaluate $\int_{0}^{\infty} e^{-a x} \frac{\cos b x-\cos c x}{x} d x$, where $a>0$.
27. Given $\int_{0}^{\infty} e^{-a x^{2}} d x=\frac{1}{2} \sqrt{\frac{\pi}{a}}, \quad a>0$, evaluate $\int_{0}^{\infty} \frac{1-e^{-a x^{2}}}{x e^{x^{2}}} d x$.
28. Using $\int_{0}^{\infty} \frac{d x}{1+\alpha^{2} x^{2}}=\frac{\pi}{2 \alpha}, \alpha>0$, show that $\int_{0}^{\infty} \frac{\tan ^{-1}(b x)-\tan ^{-1}(a x)}{x} d x=\frac{\pi}{2} \log \left(\frac{b}{a}\right), b>a>0$.
29. Using $\int_{0}^{\infty} \frac{\sin \alpha x}{x}=\frac{\pi}{2}, \alpha>0$, show that $\int_{0}^{\infty} \frac{\cos a x-\cos b x)}{x^{2}} d x=\frac{\pi}{2}(b-a), b>a>0$.
30. Using $\int_{0}^{\infty} e^{-\alpha x} d x=\frac{1}{\alpha}, \alpha>0$, show that $\int_{0}^{\infty} x^{n} e^{-\alpha x} d x=\frac{n!}{\alpha^{n+1}}$.

Vector Integration:

1. Define the following terms:

(a) Vector field.
(b) Divergence of a vector function.
(c) Curl of a vector function.
(d) Irrotational vector field.
(e) Solenoidal vector field.
(f) Independent path.
(g) Circulation of a vector function.
(h) Conservative Force Field.
(i) Scalar potential.
(j) Line Integrals.
(k) Conservative vector field.
(l) Work done.

2. State the following Theorems:

(a) Fundamental Theorem for line integrals.
(c) Stokes'Theorem in space.
(b) Gauess'Divergence Theorem.
(d) Green's Theorem in a plane.
3. Prove that if \vec{F} is a continuous vector function defined in a region R, then $\oint_{C} \vec{F} \cdot \overrightarrow{d r}$ is independent of the path if and only if there exists a single valued scalar point function ϕ having continuous first order partial derivatives in R such that $\vec{F}=\vec{\nabla} \phi$.
4. Prove that for a continuous vector function \vec{F} defined in a simply connected region $R, \oint_{C} \vec{F} \cdot \overrightarrow{d r}$ is independent of the path joining any two points in R if and only if $\oint_{C} \vec{F} \cdot \overrightarrow{d r}=0$, for every simple closed path C in R.
5. Prove that for a continuous vector function \vec{F} defined in a simply connected region $R, \oint_{C} \vec{F} \cdot \overrightarrow{d r}=0$ around every simple closed path C in R, if $\vec{\nabla} \times \vec{F}=\overrightarrow{0}$ every where in R.
6. Prove the necessary and sufficient condition that $\oint_{C} \vec{F} \cdot \overrightarrow{d r}$ is independent of the path joining any two points in R is that $\vec{\nabla} \times \vec{F}=\overrightarrow{0}$ every where in R.
7. If \vec{F} be a irrotational vector in a simply connected region R, show that there exist scalar point function ϕ such that $\vec{F}=\vec{\nabla} \phi$.
8. Define irrotational vector field. Show that the vector field $\vec{F}=\left(x^{2}+x y^{2}\right) \hat{i}+\left(y^{2}+x^{2} y\right) \hat{j}$ is irrotational. Also find the scalar function ϕ such that $\vec{F}=\vec{\nabla} \phi$.
9. Find the circulation of the vector function \vec{F} around the curve $x^{2}+y^{2}=1, z=0$, where $\vec{F}=y \hat{i}+z \hat{j}+x \hat{k}$.
10. Find the work done in moving a particle once around the circle $x^{2}+y^{2}=9$ in the $x y$-plane, where the vector field \vec{F} is given by $\vec{F}=(2 x-y+z) \hat{i}+\left(x+y-z^{2}\right) \hat{j}+(3 x-2 y+4 z) \hat{k}$.
11. Find the circulation of the vector function \vec{F} around the curve C, where $\vec{F}=\left(2 x+y^{2}\right) \hat{i}+(3 y-4 x) \hat{j}$, where C is the curve $y=x^{2}$ from $(0,0)$ to $(1,1)$ and $x=y^{2}$ from $(1,1)$ to $(0,0)$.
12. Find the circulation of $\vec{F}=(2 x-y+4 z) \hat{i}+\left(x+y-z^{2}\right) \hat{j}+\left(3 x-2 y+4 z^{2}\right) \hat{k}$ along the circle $x^{2}+y^{2}=9, z=0$
13. Let $\vec{F}=(2 y+3) \hat{i}+x z \hat{j}+(y z-x) \hat{k}$. Evaluate $\int_{C} \vec{F} \cdot \overrightarrow{d r}$ along the following path C.
(a) $x=2 t^{2}, y=t, z=t^{3}$, from $t=0$ to $t=1$.
(b) the straight lines from $(0,0,0)$ to $(0,0,1)$, then to $(0,1,1)$, and then to $(2,1,1)$.
(c) the straight lines joining from $(0,0,0)$ to $(2,1,1)$.
14. Find the work done in moving a particle in the force field $\vec{F}=3 x^{2} \hat{i}+(2 x z-y) \hat{j}+z \hat{k}$ along the path.
(a) $x=2 t^{2}, y=t, z=4 t^{2}-t$, from $t=0$ to $t=1$.
(b) the curve defined by $x^{2}=4 y, 3 x^{3}=8 z$, from $x=0$ to $x=2$.
(c) the straight lines joining from $(0,0,0)$ to $(2,1,3)$.
15. Prove that $\vec{F}=\left(y^{2} \cos x+z^{3}\right) \hat{i}+(2 y \sin x-4) \hat{j}+\left(3 x z^{2}+2\right) \hat{k}$ is a conservative force field. Find the scalar potential for \vec{F}. Also find the work done in moving a particle in the field from $(0,1,-1)$ to $\left(\frac{\pi}{2},-1,2\right)$.
16. Prove that $\vec{F}=r^{2} \vec{r}$ is a conservative force field. Find the scalar potential for \vec{F}.
17. Show that $\vec{F}=\left(2 x y+z^{3}\right) \hat{i}+x^{2} \hat{j}+3 x z^{2} \hat{k}$ is a conservative force field. Find the work done in moving an object in this field from $(1,-2,1)$ to $(3,1,4)$.
18. Determine whether the force field $\vec{F}=2 x z \hat{i}+\left(x^{2}-y\right) \hat{j}+\left(2 z-x^{2}\right) \hat{k}$ is a conservative force field or not.
19. Let $\vec{F}=(y z+2 x) \hat{i}+x z \hat{j}+(2 z+x y) \hat{k}$. Evaluate $\int_{C} \vec{F} \cdot \overrightarrow{d r}$ along the curve C given by $x^{2}+y^{2}=1, z=1$ in the positive direction from $(0,1,1)$ to $(1,0,1)$.
20. Evaluate $\iint_{S} \vec{A} \cdot \hat{n} d s$, where $\vec{A}=18 z \hat{i}-12 \hat{j}+3 y \hat{k}$, where S is the part of the plane $2 x+3 y+6 z=12$ which is located in the first octant.
21. Evaluate $\iint_{S} \vec{A} \cdot \hat{n} d s$, where $\vec{A}=z \hat{i}+x \hat{j}-3 y^{2} z \hat{k}$, where S is the surface of the cylinder $x^{2}+y^{2}=16$ included in the first octant between $z=0$ and $z=5$.
22. Evaluate $\iint_{S}(\vec{\nabla} \cdot \hat{n}) d s$, where $\vec{F}=4 x z \hat{i}-y^{2} \hat{j}+y z \hat{k}$, where S is the surface of the cube bounded by $x=0, x=1 ; \quad y=0, y=1 ; \quad z=0, z=1$.
23. Evaluate $\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d s$, where $\vec{F}=y \hat{i}+(x-2 x z) \hat{j}-x y \hat{k}$, where S is the surface of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ above $x y$-plane.
24. Calculate $\iint_{S} \vec{F} \cdot \hat{n} d s$, where $\vec{F}=x \hat{i}-y^{2} \hat{j}+z^{2} \hat{k}$ taken over the region bounded by $x=0, y=0, z=$ $0, z=4$ and $x^{2}+y^{2}=9$
25. Calculate $\iint_{S} \vec{F} \cdot \hat{n} d s$, where $\vec{F}=2 y \hat{i}-z \hat{j}+x^{2} \hat{k}$, where S is the surface of the parabolic cylinder $y^{2}=8 x$ in the first octant bounded by the planes $y=4$ and $z=6$.
26. Calculate $\iint_{S} \vec{F} \cdot \hat{n} d s$, where $\vec{F}=6 z \hat{i}+(2 x+y) \hat{j}-x \hat{k}$, where S is the entire surface of the region bounded by the cylinder $x^{2}+z^{2}=9, x=0, y=0, z=0$ and $y=8$.
27. Calculate $\iint_{S} \vec{F} \cdot \hat{n} d s$, where $\vec{F}=4 x z \hat{i}+x y z^{2} \hat{j}+3 z \hat{k}$, where S is the entire surface of the region above $x y$-plane bounded by the cone $x^{2}+y^{2}=z^{2}$ and the plane $z=4$.
28. Evaluate $\iint_{S}(\vec{\nabla} \times \vec{F}) \cdot \hat{n} d s$, where $\vec{F}=(x+2 y) \hat{i}-3 z \hat{j}+x \hat{k}$, where S is the surface of the plane $2 x+$ $y+2 z=6$ bounded by $x=0, x=1 ; \quad y=0, y=2$.
29. Evaluate $\iint_{S} \phi \hat{n} d s$, where $\phi=4 x+3 y-2 z$ and S is the surface of the plane $2 x+y+2 z=6$ bounded by $x=0, x=1 ; \quad y=0, y=2$.
30. Evaluate $\iiint_{V}(\vec{\nabla} \cdot \vec{F}) d V, \vec{F}=\left(2 x^{2}-3 z\right) \hat{i}-2 x y \hat{j}-4 x \hat{k}$ and V is the volume of the region bounded by planes $x=0, y=0, z=0$ and $2 x+2 y+z=4$.
31. Evaluate $\iiint_{V}(\vec{\nabla} \times \vec{F}) d V, \vec{F}=\left(2 x^{2}-3 z\right) \hat{i}-2 x y \hat{j}-4 x \hat{k}$ and V is the volume of the region bounded by planes $x=0, y=0, z=0$ and $2 x+2 y+z=4$.
32. Evaluate $\iiint_{V} \vec{F} d V$, where $\vec{F}=2 x z \hat{i}-x \hat{j}+y^{2} \hat{k}$ and V is the volume of the region bounded by the surfaces $x=0, y=0, y=6, z=x^{2}$ and $z=4$.
33. Verify Green's theorem in a plane for $\oint_{C}\left\{\left(x^{2}+x y\right) d x+x d y\right\}$, where C is the curve enclosing the region bounded by $y=x^{2}$ and $y=x$.
34. Verify Green's theorem in a plane for $\oint_{C}\left\{\left(2 x-y^{3}\right) d x-x y d y\right\}$, where C is the boundary of the region enclosed by $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=9$.
35. Verify Green's theorem in a plane for $\oint_{C}\left\{\left(2 x y-x^{2}\right) d x\left(x^{2}+y^{2}\right) d y\right\}$, where C is the boundary of the region enclosed by $y^{2}=x$ and $y=x^{2}$.
36. Use Green's theorem in a plane to show $\frac{1}{2} \oint_{C}(x d y-y d x)$ represents the area bounded by the simple closed curve C. Hence show that the area of the ellipse $x=a \cos t, y=b \sin t$ is $\pi a b$.
37. Use Green's theorem in $x y$-plane to evaluate $\oint_{C}\{(y-\sin x) d x+\cos x d y\}$, where C is the triangle having vertices $(0,0),\left(\frac{\pi}{2}, 0\right)$ and $\left(\frac{\pi}{2}, 1\right)$. Also calculate it without using Green's theorem. Justify your result.
38. Verify Green's theorem for the function $\vec{F}=\left(3 x^{2}-8 y^{2}\right) \hat{i}+(4 y-6 x y) \hat{j}$ over the region bounded by the curves $y=\sqrt{x}$ and $x=\sqrt{y}$.
39. Evaluate $\oint \vec{F} . d \vec{r}$ by Stoke's theorem where $\vec{F}=y^{2} \hat{i}+x^{2} \hat{j}-(x+z) \hat{k}$ where C is the boundary of the triangle with vertices at $(0,0,0),(1,0,0),(0,1,0)$.
40. Verify Stoke's theorem for the vector function $\vec{F}=(2 x-y) \hat{i}-y z^{2} \hat{j}-y^{2} \hat{k}$, where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=1$.
41. Use Stoke's theorem to prove $\oint_{C}(\overrightarrow{d r} \times \vec{F})=\iint_{S}(\hat{n} \times \vec{\nabla}) \times \vec{F}$.
42. Verify Stoke's theorem for the vector function $\vec{A}=(y-z+2) \hat{i}+(y z+4) \hat{j}-x z \hat{k}$, where S is the upper half surface of the cube $x=0, y=0, z=0, x=2, y=2, z=2$ above $x y$-plane.
43. Verify Stoke's theorem for the vector function $\vec{A}=x z \hat{i}-y \hat{j}+x^{2} y \hat{k}$, where S is the surface of the region $x=0, y=0, z=0,2 x+y+2 z=8$, which is not included $x z$-plane.
44. Verify Divergence theorem for the vector function $\vec{A}=4 x \hat{i}-2 y^{2} \hat{j}+z^{2} \hat{k}$, taken over the region bounded by $x^{2}+y^{2}=4, z=0$ and $z=3$.
45. Verify Divergence theorem for the vector function $\vec{A}=2 x^{2} y \hat{i}-y^{2} \hat{j}+4 x z^{2} \hat{k}$, taken over the region in the first octant bounded by $y^{2}+z^{2}=9, z=0$ and $x=2$.
46. Prove that $\iint_{S}(\vec{A} \cdot \hat{n}) d s=(a+b+c) V$, where S is a closed surface enclosing a volume V and the vector function $\vec{A}=a x \hat{i}+b y \hat{j}+c z \hat{k}$.
47. Let $\vec{H}=\vec{\nabla} \times \vec{A}$. Prove that $\iint_{S}(\vec{H} \cdot \hat{n}) d s=0$ for any closed surface S.
48. Let \hat{n} is the outer drawn unit normal vector to any closed surface of area S. Prove that $\iiint_{V}(\vec{\nabla} \cdot \hat{n}) d V=S$.
49. Prove that (a) $\iint_{S} \hat{n} d S=0$, for any closed surface S. (b) $\iint_{S} \vec{r} \times \overrightarrow{d S}=\overrightarrow{0}$, for any closed surface S.
50. A vector \vec{A} is always normal to a given closed surface S. Prove that $\iiint_{V}(\vec{\nabla} \times \vec{A}) d V=\overrightarrow{0}$, where V is the region bounded by S.

Some problems on divergence and curl of a vector function:

1. Prove that the vector $\vec{A}=3 y^{4} z^{2} \hat{i}+4 x^{3} z^{2} \hat{j}-3 x^{2} y^{2} \hat{k}$ is solenoidal.
2. Find the most general differentiable function $f(r)$ so that $f(r) \vec{r}$ is solenoidal.
3. For what value of the constant a, the vector $\vec{A}=\left(a x y-z^{3}\right) \hat{i}+(a-2) x^{2} \hat{j}+(1-a) x z^{2} \hat{k}$ have its curl identically equal to zero?
4. Prove that $\nabla \cdot(\vec{A} \times \vec{B})=\vec{B} \cdot(\vec{\nabla} \times \vec{A})-\vec{A} \cdot(\vec{\nabla} \times \vec{B})$.
5. Let \vec{A} and \vec{B} are irrotational. Prove that $\vec{A} \times \vec{B}$ is solenoidal.
6. If $f(r)$ be differentiable vector function then prove that $f(r) \vec{r}$ is irrotational.
7. Let \vec{a} is a constant vector and $\vec{F}=\vec{a} \times \vec{r}$. Prove that $\vec{\nabla} \cdot \vec{F}=0$.
8. Let u and v are differentiable scalar field. Prove that $\vec{\nabla} u \times \vec{\nabla} v$ is solenoidal.
9. Prove that $(\vec{U} \cdot \vec{\nabla}) \vec{U}=\frac{1}{2} \vec{\nabla} U^{2}-\vec{U} \times(\vec{\nabla} \times \vec{U})$.
10. Prove that $\vec{\nabla} \times(\vec{A} \times \vec{B})=(\vec{B} \cdot \vec{\nabla}) \vec{A}-\vec{B}(\vec{\nabla} \cdot \vec{A})-(\vec{A} \cdot \vec{\nabla}) \vec{B}+\vec{A}(\vec{\nabla} \cdot \vec{B})$.
