
CC9: Unit-2: Multivariate Calculus-II
Double Integration:

Change the order of integration in the following double integrals:

1.

∫ 4

0
dx

∫ 12x

3x2

f(x, y)dy

2.

∫ 1

0
dx

∫ 3x

2x
f(x, y)dy

3.

∫ a

0
dx

∫ √
a2−x2

a2−x2

2a

f(x, y)dy

4.

∫ 1

0
dy

∫ 1−y

−
√

1−y2
f(x, y)dx

5.

∫ 2a

0
dx

∫ √
4ax−x2

√
2ax−x2

f(x, y)dy

6.

∫ 2

0
dx

∫ 6−x

2x
f(x, y)dy

7.

∫ a

a
2

dx

∫ √
2ax−x2

0
f(x, y)dy

8.

∫ 1

0
dx

∫ √
4−x2

√
1−x2

f(x, y)dy

9.

∫ 2a

0
dx

∫ 3a−x

x2

4a

f(x, y)dy

10.

∫ 1

0
dy

∫ √
y

y
f(x, y)dx

11.

∫ 1

0
dx

∫ x

0
f(x, y)dy +

∫ 2

1
dx

∫ 2−x

0
f(x, y)dy

12.

∫ 1

0
dx

∫ x2

0
f(x, y)dy +

∫ 3

1
dx

∫ 2−x
2

0
f(x, y)dy

13.

∫ 2
3

1
3

dx

∫ √
x

x2

f(x, y)dy

14.

∫ 1

−1
dx

∫ 1+x

−x
f(x, y)dy

15.

∫ 1

0
dy

∫ 1+y

1−y
f(x, y)dx

16.

∫ 1

0
dy

∫ √
3−y2

y2

2

f(x, y)dx

17.

∫ 4

2
dx

∫ 20−4x
8−x

4
x

(4− y)dx

18.

∫ 1

0
dy

∫ 3−2y

y2
(12− 3x− 4)dx

19. By changing the order of integration prove that

∫ a

0
dx

∫ x

0

f ′(y)dy√
(a− x)(x− y)

= π{f(π)− f(0)}.

20. By changing the order of integration prove that

∫ 1

0
dy

∫ √
1−x2

0

dy

(1 + ey)
√

1− x2 − y2
=

π

2
log

(
2e

1 + e

)
.

21. By changing the order of integration prove that

∫ 1

0
dy

∫ 1
x

x

ydy

(1 + xy)2(1 + y2)
=

π − 1

4
.

22. By changing the order of integration prove that

∫ 1

0
dy

∫ 1
x

x

y2dy

(x+ y)2
√

1 + y2
=

√
2− 1

2
.

23. Let f be a bounded function of x, y over rectangular region R[a, b; c, d]. Considering a partition P of

R[a, b; c, d], define lower sum L(P ; f) and upper sum U(P ; f). when f is integrable over R?

24. Let a function f be defined on R[1, 2 ; 3, 5] by f(x, y) = x+ 2y, for (x, y) ∈ R[1, 2 ; 3, 5]. Find the lower

integral sum and upper integral sum. Does

∫∫
R
f(x, y)dxdy exists?

25. Let a function f be defined on R[0, 1 ; 0, 1] by f(x, y) =

 1
2 when y is rational

x when y is irrational

(i) Does

∫∫
R
f(x, y)dxdy exists?

(ii) Examine whether the iterated integrals

∫ 1

0
dy

∫ 1

0
f(x, y)dx and

∫ 1

0
dx

∫ 1

0
f(x, y)dy exist.
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26. State the necessary and sufficient condition for the integrability of a f be a bounded function of x, y over

rectangular region R[a, b; c, d].

27. Prove that if the double integral exists, the two repeated integrals can not exist without being equal.

28. Prove that

∫ 1

0
dx

∫ 1

0

x− y

(x+ y)3
dy ̸=

∫ 1

0
dy

∫ 1

0

x− y

(x+ y)3
dx.

Evaluate the following integrals:

29.

∫ π
2

0

∫ π

0
cos(x+ y) dxdy

30.

∫ 1

0

∫ 1−y2

0

{
(x− 1)2 + y2

}
dxdy

31.

∫ 1

0
dx

∫ x

0

√
4x2 − y2 dy

32.

∫ π
2

0

∫ π
2

0
sin(x+ y) dxdy

33.

∫ a

0
dx

∫ b

0
xy(x2 + y2)dy

34.

∫ 2

0
dx

∫ 6−x

2x
x2y dy

35.

∫ 1

−1

∫ 1

−1

dxdy√
x2 + y2

36.

∫ 1

−1

∫ 1

−1
|x+ y|dxdy

37.

∫ 1

0
dx

∫ 1

0
xy(x− y)dxdy

38.

∫ 2

0
dx

∫ √
y

y
(1 + x+ y)dy

39.

∫ 1

0
dy

∫ 3−2y

y2
(12− 3x− 4)dx

40.

∫ a

0
dx

∫ x

x2

xy(x+ y) dy

41. Evaluate

∫∫
R
[x+ y] dxdy, where R is the rectangle bounded by x = 0, x = 1; y = 0, y = 2.

42. Prove that

∫∫
R

√
|y − x2| dxdy =

1

6
(3π + 8), where R is the rectangle bounded by x = −1, x = 1;

y = 0, y = 2.

43. Evaluate

∫∫
R
(y − x) dxdy, where R is the rectangle in xy- plane bounded by y = x − 3, y = x + 1;

3y + x = 5, 3y + x = 7.

44. Prove that

∫∫
R
x3y3 dxdy =

1

48
(b4 − a4)(q4 − p4), where R is the region bounded by y2 = ax, y2 = bx;

x2 = py, x2 = qy, where 0 < a < b and 0 < p < q.

45. Use the transformation u =
x2 + y2

x
, v =

x2 + y2

y
to evaluate the integral

∫∫
R
xy dxdy, where R is the

region common to the circles x2 + y2 = x, x2 + y2 = y.

46. Prove that

∫∫
R

√
xy(1− x− y) dxdy =

2π

105
, where R is the triangle bounded by the lines x = 0, y = 0

and x+ y = 1.

47. Evaluate

∫∫
R

√
2a2 − 2a(x+ y)− (x2 + y2) dxdy, the region R of integration is the circle with center at

(a, a) and radius 2a.

48. Evaluate

∫∫
R

√
a2b2 − b2x2 − a2y2

a2b2 + b2x2 + a2y2
dxdy, R is the positive quadrant of the ellipse

x2

a2
+

y2

b2
= 1.
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49. Show that the integral

∫∫
R
e

y−x
y+x dxdy, where R is the triangular region with vertices (0, 0), (0, 1) and

(1, 0) is 1
4(e−

1
e ).

50. Evaluate

∫ ∫
x

1
2 y

1
3

(1− x− y)
2
3

dxdy over the region bounded by the lines x = 0, y = 0, x+ y = 1.

51. Show that

∫∫
R

dxdy

(1 + x2 + y2)2
, where R is the triangular region with vertices (0, 0), (2, 0) and (1,

√
3) is

√
3
2 tan−1 1

2 .

52. Prove that

∫∫
R

√
x2 + y2 dxdy, where R is the region in xy-plane bounded by the concentric circles

x2 + y2 = 1 and x2 + y2 = 4 is 14
3 π.

53. Using the transformation x = u(1 + v), y = v(1 + u), show that

∫ 2

0

∫ x

0

dxdy√
(x+ y + 1)2 − 4xy

dxdy = log
4√
e
.

54. Show that

∫ 1

0
dx

∫ x

0

√
x2 + y2 dy =

1

6
{
√
6 + log(1 +

√
2)} by transforming it into polar coordinates.

55. Show that

∫ π

0

∫ π

0
| cos(x+ y)|dxdy = 2π by using the substitution x = u− v, y = v.

56. Evaluate

∫∫
R
sin

(
x− y

x+ y

)
dxdy, where R is the region in xy-plane bounded by x = 0, y = 0 and x+y = 1.

57. Prove that

∫∫
R
sinx sin y sin(x+ y)dxdy =

π

16
, where R is the region in xy-plane bounded by x = 0, y = 0

and x+ y = π
2 .

58. Evaluate

∫ π
2

0

∫ π
2

0

√
sinϕ

sin θ
dϕdθ, by using the substitution x = sinϕ cos θ, y = sinϕ sin θ.

59. Evaluate the integral

∫ 2a

0
dx

∫ √
4ax−x2

√
2ax−x2

(
1 +

y2

x2

)
dy by changing the coordinates to r, θ, where

x = r cos2 θ, y = r sin θ cos θ.

60. Show that

∫∫
R

dxdy

xy
= log

a′

a
log

b′

b
, where R is the region bounded by four circles

x2 + y2 = ax, x2 + y2 = a′x, x2 + y2 = bx and x2 + y2 = b′x.

61. Show that

∫ π
2

0
dϕ

∫ π
2

0
f(1− sin θ cosϕ) sin θdθ =

π

2

∫ 1

0
f(x) dx.

62. If m ≥ 0, prove that

∫∫
R

(
1− x2

a2
− y2

b2

)m

f(px+ qy)dxdy = β(
1

2
,m+ 1)ab

∫ 1

−1
(1− x2)m+ 1

2 f(kx)dx,

where R is the region in xy-plane bounded by the ellipse x2

a2
+ y2

b2
= 1 and k =

√
p2a2 + q2b2.
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Surface area by using multiple Integration:

1. Show that the surface area of the part of the surface of the sphere x2 + y2 + z2 = a2 which is cut out by

the cylinder x2 + z2 = ax is 2(π − 2)a2.

2. Show that the surface area of the part of the surface of the sphere x2 + y2 + z2 = 4a2 enclosed by the

cylinder (x2 + y2)2 = 2a2(2x2 + y2) is 16(π −
√
2)a2.

3. Find the area of the surface of the sphere x2 + y2 + (z − 2)2 = 4 which lies outside the paraboloid

x2 + y2 = 3z.

4. Show that the surface area of the part of the surface of the cone z2 = x2 + y2 which is cut out by the

cylinder z2 = 2py is 2
√
2πp2.

5. Show that the surface area of the part of the surface of the cylinder x2 + y2 = a2 which is cut out by the

cylinder x2 + z2 = a2 is 8a2.

6. Show that the surface area of the part of the surface of the cone z2 + y2 = x2 inside the cylinder the

cylinder x2 + y2 = a2 is 2πa2.

7. Show that the surface area of the part of the surface of the cone z2 + y2 = x2 cut off by the cylinder the

cylinder x2 − y2 = a2 and the planes y = b, y = −b is 8
√
2 ab.

8. Show that the surface area of the part of the surface z = xy cut off by the cylinder the cylinder x2+y2 = a2

is 2π
3 {(1 + a2)

3
2 − 1}.

9. Show that the surface area of the part of the cone z2 = x2+y2 inside the cylinder the cylinder x2+y2 = 2x

is 2
√
2 π.

10. Show that the surface area of the part of the surface of the paraboloid x2

a + y2

b = 2z inside the cylinder

x2

a2
+ y2

b2
= k is 2

3π{(1 + k)
3
2 − 1}ab.

11. Evaluate

∫∫
S

(
z + 2x+

4

5
y

)
dS, where S is the portion of the plane x

2 + y
3 + z

4 = 1, lying in the first

octant.

12. Evaluate

∫∫
S
xyz dS, where S is the portion of the plane x+ y + z = 1, lying in the first octant.

13. Evaluate

∫∫
S
x dS, where S is the portion of the sphere x2 + y2 + z2 = a2, lying in the first octant.

14. Evaluate

∫∫
S

√
a2 − x2 − y2 dS, where S is the hemisphere z =

√
a2 − x2 − y2.

15. Evaluate

∫∫
S
x2y2 dS, where S is the hemisphere z =

√
a2 − x2 − y2.

16. Evaluate

∫∫
S
x2y2z dS, where S is the positive side of the lower half of the sphere x2 + y2 + z2 = a2.

17. Evaluate

∫∫
S
z2 dS, where S is the outer side of the ellipsoid x2

a2
+ y2

b2
+ z2

c2
= 1.
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Triple Integration:
Evaluate the following triple integral:

1.

∫ 3a

0

∫ 2a

0

∫ a

0
(x+ y + z)dxdydz

2.

∫ 1

0

∫ 1

y2

∫ 1−x

0
xdzdxdy

3.

∫ a

0

∫ x

y2

∫ x+y

0
ex+y+zdzdydx

4.

∫ 2

0

∫ z

0

∫ √
3x

0

x

x2 + y2
dzdydx

5.

∫ a

0

∫ √
a2−x2

0

∫ b

a
(y2 + z2)dzdydx

6.

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1−x−y

0
(1 + x+ y + z)4dz

7. Show that

∫∫∫
E
(1 + x+ y + z)2 dxdydz =

31

60
, where E is the tetrahedron bounded by the planes x =

0, y = 0, z = 0 and x+ y + z = 1.

8. Show that

∫∫∫
E

dxdydz

(1 + x+ y + z)3
=

1

16
log

(
256

e5

)
, where E is the tetrahedron bounded by the planes

x = 0, y = 0, z = 0 and x+ y + z = 1.

9. Show that

∫∫∫
E
x2y2z2(x+ y + z) dxdydz =

1

50400
, where E is the tetrahedron bounded by the planes

x = 0, y = 0, z = 0 and x+ y + z = 1.

10. Evaluate

∫∫∫
E
xαyβzγ(1− x− y − z)λ dxdydz ; α, β, γ, λ > −1, where E is the tetrahedron bounded

by the planes x = 0, y = 0, z = 0 and x+ y + z = 1.

11. Show that

∫∫∫
E

dxdydz√
1− x2 − y2 − z2

=
π2

8
, where E = {(x, y, z) : x2 + y2 + z2 < 1}.

12. Show that

∫∫∫
E
(x2 + y2 + z2) dxdydz =

4π

5
, where E is the volume of the sphere x2 + y2 + z2 ≤ 1.

13. Evaluate

∫∫∫
E

√
1− x2 − y2 − z2

1 + x2 + y2 + z2
dxdydz, where E is the positive octant of the sphere x2 + y2 + z2 ≤ 1.

14. Show that the mass of the solid in the form of the positive octant of the ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1, the

density at any point (x, y, z) being xyz.

15. Evaluate

∫∫∫
E
e

√
x2

a2
+ y2

b2
+ z2

c2 dxdydz, where E is the ellipsoid
x2

a2
+

y2

b2
+

z2

c2
≤ 1, a, b, c > 0.

16. Evaluate

∫∫∫
E

√
a2b2c2 − b2c2x2 − c2a2y2 − a2b2z2 dxdydz, where E =

{
(x, y, z) :

x2

a2
+

y2

b2
+

z2

c2
≤ 1

}

17. Show that

∫∫∫
E

dxdydz

x2 + y2 + (z − 2)2
= π

(
2− 3

2
log 3

)
, where E = {(x, y, z) : x2 + y2 + z2 ≤ 1}.

18. Show that

∫∫∫
E

dxdydz

x2 + y2 + (z − 1
2)

2
= π

(
2 +

3

2
log 3

)
, where E = {(x, y, z) : x2 + y2 + z2 ≤ 1}.

19. Show that

∫∫∫
E
(ax+ by + cz)dxdydz =

4

15
π(a2 + b2 + c2), where E = {(x, y, z) : x2 + y2 + z2 ≤ 1}.

20. Show that

∫∫∫
E
(lx2 +my2 + nz2)2dxdydz =

4

15
π(l +m+ n)a5, where E = {(x, y, z) : x2+y2+z2 ≤ a2}.
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Volume of a solid by using multiple Integration:

1. Prove that the volume common to the sphere x2 + y2 + z2 = a2 and the cylinder x2 + y2 = ay is
2

9
(3π − 4)a3.

2. Prove that the volume common to the sphere x2 + y2 + z2 = a2 and the cylinder x2 + y2 = ax is
2

9
(3π − 4)a3.

3. Prove that the volume common to the surface y2 + z2 = 4ax and the cylinder x2 + y2 = 2ax is
2

3
(3π + 8)a3.

4. Prove that the volume common to the cylinders x2 + y2 = a2 and the cylinder x2 + z2 = a2 is
16

3
a3.

5. Using surface integral show that the volume of the sphere x2 + y2 + z2 = a2 is
4

3
πa3.

6. Using surface integral show that the volume of the ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1 is

4

3
πabc.

7. Show that the volume of the solid bounded by the x2 + y2 + z2 = 4 and the surface of the paraboloid

x2 + y2 = 3z is
19

6
π.

8. Prove that the volume common to the ellipsoid
x2

a2
+

y2

b2
+

z2

c2
= 1 and the cylinder x2 + y2 = ay is

2

9
(3π − 4)a2b.

9. Prove that the volume of the solid bounded by the parabolic cylinder z = 4− y2 and bounded below by

the elliptic paraboloid x2 + 3y2 = z is 4π.

10. Compute the volume of the solid bounded by xy-plane, paraboloid z =
x2

a2
+

y2

b2
and cylinder

x2

a2
+

y2

b2
=

2x

a
.

11. Prove that the volume included between the cylinder x2 + y2 = a2 and the elliptic paraboloid
x2

p
+

y2

q
= 2z

and xy-plane is
p+ q

8pq
πa4.

12. Find the volume of the region bounded by the plane z = x+ y and the paraboloid x2 + y2 = cz.

13. Show that the volume of the region bounded by the surface

√
x

a
+

√
y

b
+

√
z

c
= 1 and three coordinate

planes is
abc

90
.

14. Find the volume of the solid bounded above by the surface 2x2 + 4y2 + z = 4 and bounded below by the

surface 2x2 + 4y2 − 4z = 4.

15. Find the volume of the solid bounded by the surfaces x2 + y2 = 2az , x2 + y2 − z2 = a2 and z = 0.

16. Compute the volume of the solid bounded by the surface (x2 + y2 + z2)2 = a3x.

17. Determine the volume of the solid bounded by the surfaces z = x+ y, xy = 1, xy = 2, y = x, y = 2x, z = 0,

where x > 0, y > 0.

18. Compute the volume of the solid bounded by the paraboloid x2 + y2 = a(a− 2z), z ≥ 0 and sphere

x2 + y2 + z2 = a2.
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Differentiation under the sign of Integration:

1. Show that

∫ π

0
log(1 + a cosx)dx = π log

1

2
(1 +

√
1− a2), |a| < 1.

2. Show that

∫ π

0

log(1 + a cosx)

cosx
dx = π sin−1 a, |a| < 1.

3. Show that

∫ π
2

0

log(1 + a sin2 x)

sin2 x
dx = π(

√
1 + a− 1), a > −1.

4. Show that

∫ π

0

log(1 + sinα cosx)

cosx
dx = πα.

5. Show that

∫ π
2

0

log(1 + cosα cosx)

cosx
dx =

1

2

(
π2

4
− α2

)
.

6. Show that

∫ π
2

0
log(1− x2 sin2 θ)dθ = π log

1

2
(1 +

√
1− x2) =

∫ π
2

0
log(1− x2 cos2 θ)dθ, for |x| < 1.

7. Show that

∫ π
2

0
log(1− e2 sin2 θ)dθ = π log

1

2
(1 +

√
1− e2), for 0 < e2 < 1.

Hence find

∫ π
2

0
log(sin θ)dθ.

8. Show that

∫ π
2

0
log(a2 cos2 θ + b2 sin2 θ)dθ = π log

1

2
(a+ b), for a > 0, b > 0.

9. Show that

∫ π
2

0
log

(
a+ b sin θ

a− b sin θ

)
dθ

sin θ
= π sin−1

(
b

a

)
, for b < a.

10. Show that

∫ π
2

0

|ab|dx
(a2 cos2 x+ b2 sin2 x)

=
π

2
, a, b ∈ R− {0} ,

Hence show that

∫ π
2

0

|ab|dx
(a2 cos2 x+ b2 sin2 x)2

=
π(a2 + b2)

4|ab|3
.

11. Show that

∫ π

0
log(1− 2a cosx+ a2)dx = π log(a2), where |a| > 1.

12. Show that

∫ θ

0
log(1 + tan θ tanx)dx = θ log(sec θ), where −π

2 < θ < π
2 .

13. Show that

∫ π
2

π
2
−α

sin θ cos−1 (cosα cosecθ) dθ =
π

2
(1− cosα), 0 < α <

π

2
.

14. Show that

∫ a

0

log(1 + ax)

1 + x2
dx =

1

2
log(1 + a2) tan−1 a, a > 0.

15. Show that

∫ 1

0

tan−1(ax)

x
√
1− x2

dx =
π

2
log(a+

√
1 + a2).

16. Show that

∫ 1

0
log

(
1 + ax

1− ax

)
dx

x
√
1− x2

= πsin−1a, a2 ≤ 1.

17. Assuming that

∫ 1

0
xa dx =

1

1 + a
, (a > −1); deduce that

∫ 1

0

xa−1

log x
dx = log 1 + a.

18. Assuming that

∫ 1

0
xa−1 dx =

1

a
, (a > 0); deduce that

∫ 1

0

xb−1 − xa−1

log x
dx = log

(
b

a

)
, a > 0, b > 0.
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19. Show that

∫ ∞

0
e−x2− a2

x2 dx =

√
x

2
e−2|a| and

∫ ∞

0
e−x2− a2

x2 dx =

√
x

2
e−2|a|.

20. Evaluate

∫ ∞

0
e−xy cosmx dx. Deduce that

∫ ∞

0
e−x2

cosmx dx =

√
π

2
e−

α2

4 .

21. Let

∫ ∞

0
e−xy dx =

1

y
, y > 0. Deduce that

∫ ∞

0

e−ax − e−ax

x
dx = log

(
b

a

)
, a > 0, b > 0.

22. Under certain condition show that

∫ ∞

0

f(ax)− f(bx)

x
dx = f(0) log

(
b

a

)
, a > 0, b > 0.

23. Show that

∫ ∞

0

cosxy

1 + x2
dx =

1

2
πe−y and

∫ ∞

0

sinxy

x(1 + x2)
dx =

1

2
π(1− e−y), y > 0.

24. Starting from

∫ ∞

0
e−αx cosβx dx =

α

α2 + β2
, α ≥ 0 show that

∫ ∞

0
e−αx sin

(
βx

x

)
dx = tan−1

(
β

α

)
.

25. Evaluate

∫ ∞

0
e−tx2

dx, show that

∫ ∞

0

e−ax2 − e−bx2

x2
dx =

√
π(
√
b−

√
a ), where a > 0, b > 0.

26. Evaluate

∫ ∞

0
e−ax sin tx dx, Use the result to evaluate

∫ ∞

0
e−ax cos bx− cos cx

x
dx, where a > 0.

27. Given

∫ ∞

0
e−ax2

dx =
1

2

√
π

a
, a > 0, evaluate

∫ ∞

0

1− e−ax2

xex2 dx.

28. Using

∫ ∞

0

dx

1 + α2x2
=

π

2α
, α > 0, show that

∫ ∞

0

tan−1(bx)− tan−1(ax)

x
dx =

π

2
log

(
b

a

)
, b > a > 0.

29. Using

∫ ∞

0

sinαx

x
=

π

2
, α > 0, show that

∫ ∞

0

cos ax− cos bx)

x2
dx =

π

2
(b− a), b > a > 0.

30. Using

∫ ∞

0
e−αx dx =

1

α
, α > 0, show that

∫ ∞

0
xne−αx dx =

n!

αn+1.
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Vector Integration:

1. Define the following terms:

(a) Vector field.

(b) Divergence of a vector function.

(c) Curl of a vector function.

(d) Irrotational vector field.

(e) Solenoidal vector field.

(f) Independent path.

(g) Circulation of a vector function.

(h) Conservative Force Field.

(i) Scalar potential.

(j) Line Integrals.

(k) Conservative vector field.

(l) Work done.

2. State the following Theorems:

(a) Fundamental Theorem for line integrals.

(b) Gauess’Divergence Theorem.

(c) Stokes’Theorem in space.

(d) Green’s Theorem in a plane.

3. Prove that if F⃗ is a continuous vector function defined in a region R, then

∮
C
F⃗ · d⃗r is independent of

the path if and only if there exists a single valued scalar point function ϕ having continuous first order

partial derivatives in R such that F⃗ = ∇⃗ϕ.

4. Prove that for a continuous vector function F⃗ defined in a simply connected region R,

∮
C
F⃗ · d⃗r is

independent of the path joining any two points in R if and only if

∮
C
F⃗ · d⃗r = 0, for every simple closed

path C in R.

5. Prove that for a continuous vector function F⃗ defined in a simply connected region R,

∮
C
F⃗ · d⃗r = 0

around every simple closed path C in R , if ∇⃗ × F⃗ = 0⃗ every where in R.

6. Prove the necessary and sufficient condition that

∮
C
F⃗ · d⃗r is independent of the path joining any two

points in R is that ∇⃗ × F⃗ = 0⃗ every where in R.

7. If F⃗ be a irrotational vector in a simply connected region R, show that there exist scalar point function

ϕ such that F⃗ = ∇⃗ϕ.

8. Define irrotational vector field. Show that the vector field F⃗ = (x2 + xy2)̂i+ (y2 + x2y)ĵ is irrotational.

Also find the scalar function ϕ such that F⃗ = ∇⃗ϕ.

9. Find the circulation of the vector function F⃗ around the curve x2+y2 = 1, z = 0, where F⃗ = yî+ zĵ + xk̂.

10. Find the work done in moving a particle once around the circle x2 + y2 = 9 in the xy-plane, where the

vector field F⃗ is given by F⃗ = (2x− y + z)̂i+ (x+ y − z2)ĵ + (3x− 2y + 4z)k̂.

11. Find the circulation of the vector function F⃗ around the curve C, where F⃗ = (2x+ y2)̂i+ (3y − 4x)ĵ,

where C is the curve y = x2 from (0, 0) to (1, 1) and x = y2 from (1, 1) to (0, 0).
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12. Find the circulation of F⃗ = (2x−y+4z)̂i+(x+y−z2)ĵ+(3x−2y+4z2)k̂ along the circle x2+y2 = 9, z = 0

13. Let F⃗ = (2y + 3)̂i+ xzĵ + (yz − x)k̂. Evaluate

∫
C
F⃗ · d⃗r along the following path C.

(a) x = 2t2, y = t, z = t3, from t = 0 to t = 1.

(b) the straight lines from (0, 0, 0) to (0, 0, 1), then to (0, 1, 1), and then to (2, 1, 1).

(c) the straight lines joining from (0, 0, 0) to (2, 1, 1).

14. Find the work done in moving a particle in the force field F⃗ = 3x2î+ (2xz − y)ĵ + zk̂ along the path.

(a) x = 2t2, y = t, z = 4t2 − t, from t = 0 to t = 1.

(b) the curve defined by x2 = 4y, 3x3 = 8z, from x = 0 to x = 2.

(c) the straight lines joining from (0, 0, 0) to (2, 1, 3).

15. Prove that F⃗ = (y2 cosx+ z3)̂i+ (2y sinx− 4)ĵ + (3xz2 + 2)k̂ is a conservative force field. Find the

scalar potential for F⃗ . Also find the work done in moving a particle in the field from (0, 1,−1) to (π2 ,−1, 2).

16. Prove that F⃗ = r2 r⃗ is a conservative force field. Find the scalar potential for F⃗ .

17. Show that F⃗ = (2xy + z3)̂i+ x2ĵ + 3xz2k̂ is a conservative force field. Find the work done in moving an

object in this field from (1,−2, 1) to (3, 1, 4).

18. Determine whether the force field F⃗ = 2xzî+ (x2 − y)ĵ + (2z − x2)k̂ is a conservative force field or not.

19. Let F⃗ = (yz + 2x)̂i+ xzĵ + (2z + xy)k̂. Evaluate

∫
C
F⃗ · d⃗r along the curve C given by x2+y2 = 1, z = 1

in the positive direction from (0, 1, 1) to (1, 0, 1).

20. Evaluate

∫∫
S
A⃗ · n̂ ds, where A⃗ = 18zî− 12ĵ + 3yk̂, where S is the part of the plane 2x+ 3y + 6z = 12

which is located in the first octant.

21. Evaluate

∫∫
S
A⃗ · n̂ ds, where A⃗ = zî + xĵ − 3y2zk̂, where S is the surface of the cylinder x2 + y2 = 16

included in the first octant between z = 0 and z = 5.

22. Evaluate

∫∫
S
(∇⃗ · n̂) ds, where F⃗ = 4xzî− y2ĵ + yzk̂, where S is the surface of the cube bounded by

x = 0, x = 1; y = 0, y = 1; z = 0, z = 1.

23. Evaluate

∫∫
S
(∇⃗ × F⃗ ) · n̂ ds, where F⃗ = yî+ (x− 2xz)ĵ − xyk̂, where S is the surface of the sphere

x2 + y2 + z2 = a2 above xy-plane.

24. Calculate

∫∫
S
F⃗ · n̂ ds, where F⃗ = xî − y2ĵ + z2k̂ taken over the region bounded by x = 0, y = 0, z =

0, z = 4 and x2 + y2 = 9

25. Calculate

∫∫
S
F⃗ · n̂ ds, where F⃗ = 2yî− zĵ + x2k̂, where S is the surface of the parabolic cylinder y2 = 8x

in the first octant bounded by the planes y = 4 and z = 6.
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26. Calculate

∫∫
S
F⃗ · n̂ ds, where F⃗ = 6zî+ (2x+ y)ĵ − xk̂, where S is the entire surface of the region

bounded by the cylinder x2 + z2 = 9, x = 0, y = 0, z = 0 and y = 8.

27. Calculate

∫∫
S
F⃗ · n̂ ds, where F⃗ = 4xzî+ xyz2ĵ + 3zk̂, where S is the entire surface of the region above

xy-plane bounded by the cone x2 + y2 = z2 and the plane z = 4.

28. Evaluate

∫∫
S
(∇⃗ × F⃗ ) · n̂ ds, where F⃗ = (x+ 2y)̂i− 3zĵ + xk̂, where S is the surface of the plane 2x +

y + 2z = 6 bounded by x = 0, x = 1; y = 0, y = 2.

29. Evaluate

∫∫
S
ϕ n̂ ds, where ϕ = 4x+ 3y − 2z and S is the surface of the plane 2x+ y + 2z = 6 bounded

by x = 0, x = 1; y = 0, y = 2.

30. Evaluate

∫∫∫
V

(
∇⃗ · F⃗

)
dV , F⃗ = (2x2 − 3z)̂i− 2xyĵ − 4xk̂ and V is the volume of the region bounded

by planes x = 0, y = 0, z = 0 and 2x+ 2y + z = 4.

31. Evaluate

∫∫∫
V

(
∇⃗ × F⃗

)
dV , F⃗ = (2x2 − 3z)̂i− 2xyĵ − 4xk̂ and V is the volume of the region bounded

by planes x = 0, y = 0, z = 0 and 2x+ 2y + z = 4.

32. Evaluate

∫∫∫
V
F⃗ dV , where F⃗ = 2xzî− xĵ + y2k̂ and V is the volume of the region bounded by the

surfaces x = 0, y = 0, y = 6, z = x2 and z = 4.

33. Verify Green’s theorem in a plane for

∮
C
{(x2 + xy)dx+ xdy}, where C is the curve enclosing the region

bounded by y = x2 and y = x.

34. Verify Green’s theorem in a plane for

∮
C
{(2x− y3)dx− xydy}, where C is the boundary of the region

enclosed by x2 + y2 = 1 and x2 + y2 = 9.

35. Verify Green’s theorem in a plane for

∮
C
{(2xy − x2)dx(x2 + y2)dy}, where C is the boundary of the

region enclosed by y2 = x and y = x2.

36. Use Green’s theorem in a plane to show
1

2

∮
C
(xdy − ydx) represents the area bounded by the simple

closed curve C. Hence show that the area of the ellipse x = a cos t, y = b sin t is πab.

37. Use Green’s theorem in xy-plane to evaluate

∮
C
{(y − sinx)dx+ cosxdy} , where C is the triangle having

vertices (0, 0), (π2 , 0) and (π2 , 1). Also calculate it without using Green’s theorem. Justify your result.

38. Verify Green’s theorem for the function F⃗ = (3x2 − 8y2)̂i+ (4y − 6xy)ĵ over the region bounded by the

curves y =
√
x and x =

√
y.

39. Evaluate

∮
F⃗ .dr⃗ by Stoke’s theorem where F⃗ = y2î + x2ĵ − (x + z)k̂ where C is the boundary of the

triangle with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0).

40. Verify Stoke’s theorem for the vector function F⃗ = (2x − y)̂i − yz2ĵ − y2k̂, where S is the upper half

surface of the sphere x2 + y2 + z2 = 1.
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41. Use Stoke’s theorem to prove

∮
C

(
d⃗r × F⃗

)
=

∫∫
S

(
n̂× ∇⃗

)
× F⃗ .

42. Verify Stoke’s theorem for the vector function A⃗ = (y − z + 2)̂i+ (yz + 4)ĵ − xzk̂, where S is the upper

half surface of the cube x = 0, y = 0, z = 0 , x = 2, y = 2, z = 2 above xy-plane.

43. Verify Stoke’s theorem for the vector function A⃗ = xzî− yĵ + x2yk̂, where S is the surface of the region

x = 0, y = 0, z = 0 , 2x+ y + 2z = 8, which is not included xz-plane.

44. Verify Divergence theorem for the vector function A⃗ = 4xî− 2y2ĵ + z2k̂, taken over the region bounded

by x2 + y2 = 4, z = 0 and z = 3.

45. Verify Divergence theorem for the vector function A⃗ = 2x2yî− y2ĵ + 4xz2k̂, taken over the region in the

first octant bounded by y2 + z2 = 9, z = 0 and x = 2.

46. Prove that

∫∫
S
(A⃗ · n̂) ds = (a+ b+ c)V , where S is a closed surface enclosing a volume V and the vector

function A⃗ = axî+ byĵ + czk̂.

47. Let H⃗ = ∇⃗ × A⃗. Prove that

∫∫
S
(H⃗ · n̂) ds = 0 for any closed surface S.

48. Let n̂ is the outer drawn unit normal vector to any closed surface of area S. Prove that

∫∫∫
V

(
∇⃗ · n̂

)
dV = S.

49. Prove that (a)

∫∫
S
n̂ dS = 0, for any closed surface S. (b)

∫∫
S
r⃗ × d⃗S = 0⃗, for any closed surface S.

50. A vector A⃗ is always normal to a given closed surface S. Prove that

∫∫∫
V

(
∇⃗ × A⃗

)
dV = 0⃗, where V is

the region bounded by S.

Some problems on divergence and curl of a vector function:

1. Prove that the vector A⃗ = 3y4z2î+ 4x3z2ĵ − 3x2y2k̂ is solenoidal.

2. Find the most general differentiable function f(r) so that f(r)r⃗ is solenoidal.

3. For what value of the constant a, the vector A⃗ = (axy − z3)̂i + (a − 2)x2ĵ + (1 − a)xz2k̂ have its curl

identically equal to zero ?

4. Prove that ∇ ·
(
A⃗× B⃗

)
= B⃗ ·

(
∇⃗ × A⃗

)
− A⃗ ·

(
∇⃗ × B⃗

)
.

5. Let A⃗ and B⃗ are irrotational. Prove that A⃗× B⃗ is solenoidal.

6. If f(r) be differentiable vector function then prove that f(r)r⃗ is irrotational.

7. Let a⃗ is a constant vector and F⃗ = a⃗× r⃗. Prove that ∇⃗ · F⃗ = 0.

8. Let u and v are differentiable scalar field. Prove that ∇⃗u× ∇⃗v is solenoidal.

9. Prove that
(
U⃗ · ∇⃗

)
U⃗ =

1

2
∇⃗U2 − U⃗ ×

(
∇⃗ × U⃗

)
.

10. Prove that ∇⃗ ×
(
A⃗× B⃗

)
=

(
B⃗ · ∇⃗

)
A⃗− B⃗

(
∇⃗ · A⃗

)
−
(
A⃗ · ∇⃗

)
B⃗ + A⃗

(
∇⃗ · B⃗

)
.
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